skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Webster, Justin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. The strong asymptotic stabilization of 3D hyperbolic dynamics is achieved by a damped 2D elastic structure. The model is a Neumann wave-type equation with low regularity coupling conditions given in terms of a nonlinear von Karman plate. This problem is motivated by the elimination of aeroelastic instability (sustained oscillations of bridges, airfoils, etc.) in engineering applications. Empirical observations indicate that the subsonic wave-plate system converges to equilibria. Classical approaches which decouple the plate and wave dynamics have fallen short. Here, we operate on the model as it appears in the engineering literature with no regularization and achieve stabilization by microlocalizing the Neumann boundary data for the wave equation (given through the plate dynamics). We observe a compensation by the plate dynamics precisely where the regularity of the 3D Neumann wave is compromised (in the characteristic sector). 
    more » « less
  3. Peszynska, Malgorzata; Pop, Iuliu_Sorin; Wohlmuth, Diepenbeek_Barbara (Ed.)
    Many real-life applications require mathematical models at multiple scales, defined in domains with complex structures, some of which having time dependent boundaries. Mathematical models of this type are encountered in seemingly disparate areas e.g., flow and deformation in the subsurface or beneath the ocean floor, and in processes of clinical relevance. While the areas are different, the structure of the models and the challenges are shared: the analysis and simulation must account for the evolution of the domain due to the many coupled processes in the multi-scale context. The key theme and focus of the workshop were novel ideas in the mathematical modeling, analysis, and numerical simulation, which are cross-cutting between the two application areas mentioned above. The talks have covered the mathematical treatment of such problems, as well as the development of efficent numerical discretization schemes and of solvers for large-scale problems. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    We consider a recent plate model obtained as a scaled limit of the three-dimensional Biot system of poro-elasticity. The result is a ‘2.5’-dimensional linear system that couples traditional Euler–Bernoulli plate dynamics to a pressure equation in three dimensions, where diffusion acts only transversely. We allow the permeability function to be time dependent, making the problem non-autonomous and disqualifying much of the standard abstract theory. Weak solutions are defined in the so-called quasi-static case, and the problem is framed abstractly as an implicit, degenerate evolution problem. Utilizing the theory for weak solutions for implicit evolution equations, we obtain existence of solutions. Uniqueness is obtained under additional hypotheses on the regularity of the permeability function. We address the inertial case in an appendix, by way of semigroup theory. The work here provides a baseline theory of weak solutions for the poro-elastic plate and exposits a variety of interesting related models and associated analytical investigations. 
    more » « less